vector-0.12.3.1: Efficient Arrays
Copyright(c) Roman Leshchinskiy 2009-2010
LicenseBSD-style
MaintainerRoman Leshchinskiy <rl@cse.unsw.edu.au>
Stabilityexperimental
Portabilitynon-portable
Safe HaskellNone
LanguageHaskell2010

Data.Vector.Storable.Mutable

Description

Mutable vectors based on Storable.

Synopsis

Mutable vectors of Storable types

data MVector s a Source #

Mutable Storable-based vectors

Constructors

MVector !Int !(ForeignPtr a) 

Instances

Instances details
Storable a => MVector MVector a Source # 
Instance details

Defined in Data.Vector.Storable.Mutable

NFData1 (MVector s) Source # 
Instance details

Defined in Data.Vector.Storable.Mutable

Methods

liftRnf :: (a -> ()) -> MVector s a -> () #

NFData (MVector s a) Source # 
Instance details

Defined in Data.Vector.Storable.Mutable

Methods

rnf :: MVector s a -> () #

class Storable a #

The member functions of this class facilitate writing values of primitive types to raw memory (which may have been allocated with the above mentioned routines) and reading values from blocks of raw memory. The class, furthermore, includes support for computing the storage requirements and alignment restrictions of storable types.

Memory addresses are represented as values of type Ptr a, for some a which is an instance of class Storable. The type argument to Ptr helps provide some valuable type safety in FFI code (you can't mix pointers of different types without an explicit cast), while helping the Haskell type system figure out which marshalling method is needed for a given pointer.

All marshalling between Haskell and a foreign language ultimately boils down to translating Haskell data structures into the binary representation of a corresponding data structure of the foreign language and vice versa. To code this marshalling in Haskell, it is necessary to manipulate primitive data types stored in unstructured memory blocks. The class Storable facilitates this manipulation on all types for which it is instantiated, which are the standard basic types of Haskell, the fixed size Int types (Int8, Int16, Int32, Int64), the fixed size Word types (Word8, Word16, Word32, Word64), StablePtr, all types from Foreign.C.Types, as well as Ptr.

Minimal complete definition

sizeOf, alignment, (peek | peekElemOff | peekByteOff), (poke | pokeElemOff | pokeByteOff)

Instances

Instances details
Storable Bool

Since: base-2.1

Instance details

Defined in Foreign.Storable

Methods

sizeOf :: Bool -> Int #

alignment :: Bool -> Int #

peekElemOff :: Ptr Bool -> Int -> IO Bool #

pokeElemOff :: Ptr Bool -> Int -> Bool -> IO () #

peekByteOff :: Ptr b -> Int -> IO Bool #

pokeByteOff :: Ptr b -> Int -> Bool -> IO () #

peek :: Ptr Bool -> IO Bool #

poke :: Ptr Bool -> Bool -> IO () #

Storable Char

Since: base-2.1

Instance details

Defined in Foreign.Storable

Methods

sizeOf :: Char -> Int #

alignment :: Char -> Int #

peekElemOff :: Ptr Char -> Int -> IO Char #

pokeElemOff :: Ptr Char -> Int -> Char -> IO () #

peekByteOff :: Ptr b -> Int -> IO Char #

pokeByteOff :: Ptr b -> Int -> Char -> IO () #

peek :: Ptr Char -> IO Char #

poke :: Ptr Char -> Char -> IO () #

Storable Double

Since: base-2.1

Instance details

Defined in Foreign.Storable

Storable Float

Since: base-2.1

Instance details

Defined in Foreign.Storable

Methods

sizeOf :: Float -> Int #

alignment :: Float -> Int #

peekElemOff :: Ptr Float -> Int -> IO Float #

pokeElemOff :: Ptr Float -> Int -> Float -> IO () #

peekByteOff :: Ptr b -> Int -> IO Float #

pokeByteOff :: Ptr b -> Int -> Float -> IO () #

peek :: Ptr Float -> IO Float #

poke :: Ptr Float -> Float -> IO () #

Storable Int

Since: base-2.1

Instance details

Defined in Foreign.Storable

Methods

sizeOf :: Int -> Int #

alignment :: Int -> Int #

peekElemOff :: Ptr Int -> Int -> IO Int #

pokeElemOff :: Ptr Int -> Int -> Int -> IO () #

peekByteOff :: Ptr b -> Int -> IO Int #

pokeByteOff :: Ptr b -> Int -> Int -> IO () #

peek :: Ptr Int -> IO Int #

poke :: Ptr Int -> Int -> IO () #

Storable Int8

Since: base-2.1

Instance details

Defined in Foreign.Storable

Methods

sizeOf :: Int8 -> Int #

alignment :: Int8 -> Int #

peekElemOff :: Ptr Int8 -> Int -> IO Int8 #

pokeElemOff :: Ptr Int8 -> Int -> Int8 -> IO () #

peekByteOff :: Ptr b -> Int -> IO Int8 #

pokeByteOff :: Ptr b -> Int -> Int8 -> IO () #

peek :: Ptr Int8 -> IO Int8 #

poke :: Ptr Int8 -> Int8 -> IO () #

Storable Int16

Since: base-2.1

Instance details

Defined in Foreign.Storable

Methods

sizeOf :: Int16 -> Int #

alignment :: Int16 -> Int #

peekElemOff :: Ptr Int16 -> Int -> IO Int16 #

pokeElemOff :: Ptr Int16 -> Int -> Int16 -> IO () #

peekByteOff :: Ptr b -> Int -> IO Int16 #

pokeByteOff :: Ptr b -> Int -> Int16 -> IO () #

peek :: Ptr Int16 -> IO Int16 #

poke :: Ptr Int16 -> Int16 -> IO () #

Storable Int32

Since: base-2.1

Instance details

Defined in Foreign.Storable

Methods

sizeOf :: Int32 -> Int #

alignment :: Int32 -> Int #

peekElemOff :: Ptr Int32 -> Int -> IO Int32 #

pokeElemOff :: Ptr Int32 -> Int -> Int32 -> IO () #

peekByteOff :: Ptr b -> Int -> IO Int32 #

pokeByteOff :: Ptr b -> Int -> Int32 -> IO () #

peek :: Ptr Int32 -> IO Int32 #

poke :: Ptr Int32 -> Int32 -> IO () #

Storable Int64

Since: base-2.1

Instance details

Defined in Foreign.Storable

Methods

sizeOf :: Int64 -> Int #

alignment :: Int64 -> Int #

peekElemOff :: Ptr Int64 -> Int -> IO Int64 #

pokeElemOff :: Ptr Int64 -> Int -> Int64 -> IO () #

peekByteOff :: Ptr b -> Int -> IO Int64 #

pokeByteOff :: Ptr b -> Int -> Int64 -> IO () #

peek :: Ptr Int64 -> IO Int64 #

poke :: Ptr Int64 -> Int64 -> IO () #

Storable Word

Since: base-2.1

Instance details

Defined in Foreign.Storable

Methods

sizeOf :: Word -> Int #

alignment :: Word -> Int #

peekElemOff :: Ptr Word -> Int -> IO Word #

pokeElemOff :: Ptr Word -> Int -> Word -> IO () #

peekByteOff :: Ptr b -> Int -> IO Word #

pokeByteOff :: Ptr b -> Int -> Word -> IO () #

peek :: Ptr Word -> IO Word #

poke :: Ptr Word -> Word -> IO () #

Storable Word8

Since: base-2.1

Instance details

Defined in Foreign.Storable

Methods

sizeOf :: Word8 -> Int #

alignment :: Word8 -> Int #

peekElemOff :: Ptr Word8 -> Int -> IO Word8 #

pokeElemOff :: Ptr Word8 -> Int -> Word8 -> IO () #

peekByteOff :: Ptr b -> Int -> IO Word8 #

pokeByteOff :: Ptr b -> Int -> Word8 -> IO () #

peek :: Ptr Word8 -> IO Word8 #

poke :: Ptr Word8 -> Word8 -> IO () #

Storable Word16

Since: base-2.1

Instance details

Defined in Foreign.Storable

Storable Word32

Since: base-2.1

Instance details

Defined in Foreign.Storable

Storable Word64

Since: base-2.1

Instance details

Defined in Foreign.Storable

Storable ()

Since: base-4.9.0.0

Instance details

Defined in Foreign.Storable

Methods

sizeOf :: () -> Int #

alignment :: () -> Int #

peekElemOff :: Ptr () -> Int -> IO () #

pokeElemOff :: Ptr () -> Int -> () -> IO () #

peekByteOff :: Ptr b -> Int -> IO () #

pokeByteOff :: Ptr b -> Int -> () -> IO () #

peek :: Ptr () -> IO () #

poke :: Ptr () -> () -> IO () #

Storable CDev 
Instance details

Defined in System.Posix.Types

Methods

sizeOf :: CDev -> Int #

alignment :: CDev -> Int #

peekElemOff :: Ptr CDev -> Int -> IO CDev #

pokeElemOff :: Ptr CDev -> Int -> CDev -> IO () #

peekByteOff :: Ptr b -> Int -> IO CDev #

pokeByteOff :: Ptr b -> Int -> CDev -> IO () #

peek :: Ptr CDev -> IO CDev #

poke :: Ptr CDev -> CDev -> IO () #

Storable CIno 
Instance details

Defined in System.Posix.Types

Methods

sizeOf :: CIno -> Int #

alignment :: CIno -> Int #

peekElemOff :: Ptr CIno -> Int -> IO CIno #

pokeElemOff :: Ptr CIno -> Int -> CIno -> IO () #

peekByteOff :: Ptr b -> Int -> IO CIno #

pokeByteOff :: Ptr b -> Int -> CIno -> IO () #

peek :: Ptr CIno -> IO CIno #

poke :: Ptr CIno -> CIno -> IO () #

Storable CMode 
Instance details

Defined in System.Posix.Types

Methods

sizeOf :: CMode -> Int #

alignment :: CMode -> Int #

peekElemOff :: Ptr CMode -> Int -> IO CMode #

pokeElemOff :: Ptr CMode -> Int -> CMode -> IO () #

peekByteOff :: Ptr b -> Int -> IO CMode #

pokeByteOff :: Ptr b -> Int -> CMode -> IO () #

peek :: Ptr CMode -> IO CMode #

poke :: Ptr CMode -> CMode -> IO () #

Storable COff 
Instance details

Defined in System.Posix.Types

Methods

sizeOf :: COff -> Int #

alignment :: COff -> Int #

peekElemOff :: Ptr COff -> Int -> IO COff #

pokeElemOff :: Ptr COff -> Int -> COff -> IO () #

peekByteOff :: Ptr b -> Int -> IO COff #

pokeByteOff :: Ptr b -> Int -> COff -> IO () #

peek :: Ptr COff -> IO COff #

poke :: Ptr COff -> COff -> IO () #

Storable CPid 
Instance details

Defined in System.Posix.Types

Methods

sizeOf :: CPid -> Int #

alignment :: CPid -> Int #

peekElemOff :: Ptr CPid -> Int -> IO CPid #

pokeElemOff :: Ptr CPid -> Int -> CPid -> IO () #

peekByteOff :: Ptr b -> Int -> IO CPid #

pokeByteOff :: Ptr b -> Int -> CPid -> IO () #

peek :: Ptr CPid -> IO CPid #

poke :: Ptr CPid -> CPid -> IO () #

Storable CSsize 
Instance details

Defined in System.Posix.Types

Storable CGid 
Instance details

Defined in System.Posix.Types

Methods

sizeOf :: CGid -> Int #

alignment :: CGid -> Int #

peekElemOff :: Ptr CGid -> Int -> IO CGid #

pokeElemOff :: Ptr CGid -> Int -> CGid -> IO () #

peekByteOff :: Ptr b -> Int -> IO CGid #

pokeByteOff :: Ptr b -> Int -> CGid -> IO () #

peek :: Ptr CGid -> IO CGid #

poke :: Ptr CGid -> CGid -> IO () #

Storable CNlink 
Instance details

Defined in System.Posix.Types

Storable CUid 
Instance details

Defined in System.Posix.Types

Methods

sizeOf :: CUid -> Int #

alignment :: CUid -> Int #

peekElemOff :: Ptr CUid -> Int -> IO CUid #

pokeElemOff :: Ptr CUid -> Int -> CUid -> IO () #

peekByteOff :: Ptr b -> Int -> IO CUid #

pokeByteOff :: Ptr b -> Int -> CUid -> IO () #

peek :: Ptr CUid -> IO CUid #

poke :: Ptr CUid -> CUid -> IO () #

Storable CCc 
Instance details

Defined in System.Posix.Types

Methods

sizeOf :: CCc -> Int #

alignment :: CCc -> Int #

peekElemOff :: Ptr CCc -> Int -> IO CCc #

pokeElemOff :: Ptr CCc -> Int -> CCc -> IO () #

peekByteOff :: Ptr b -> Int -> IO CCc #

pokeByteOff :: Ptr b -> Int -> CCc -> IO () #

peek :: Ptr CCc -> IO CCc #

poke :: Ptr CCc -> CCc -> IO () #

Storable CSpeed 
Instance details

Defined in System.Posix.Types

Storable CTcflag 
Instance details

Defined in System.Posix.Types

Storable CRLim 
Instance details

Defined in System.Posix.Types

Methods

sizeOf :: CRLim -> Int #

alignment :: CRLim -> Int #

peekElemOff :: Ptr CRLim -> Int -> IO CRLim #

pokeElemOff :: Ptr CRLim -> Int -> CRLim -> IO () #

peekByteOff :: Ptr b -> Int -> IO CRLim #

pokeByteOff :: Ptr b -> Int -> CRLim -> IO () #

peek :: Ptr CRLim -> IO CRLim #

poke :: Ptr CRLim -> CRLim -> IO () #

Storable CBlkSize 
Instance details

Defined in System.Posix.Types

Storable CBlkCnt 
Instance details

Defined in System.Posix.Types

Storable CClockId 
Instance details

Defined in System.Posix.Types

Storable CFsBlkCnt 
Instance details

Defined in System.Posix.Types

Storable CFsFilCnt 
Instance details

Defined in System.Posix.Types

Storable CId 
Instance details

Defined in System.Posix.Types

Methods

sizeOf :: CId -> Int #

alignment :: CId -> Int #

peekElemOff :: Ptr CId -> Int -> IO CId #

pokeElemOff :: Ptr CId -> Int -> CId -> IO () #

peekByteOff :: Ptr b -> Int -> IO CId #

pokeByteOff :: Ptr b -> Int -> CId -> IO () #

peek :: Ptr CId -> IO CId #

poke :: Ptr CId -> CId -> IO () #

Storable CKey 
Instance details

Defined in System.Posix.Types

Methods

sizeOf :: CKey -> Int #

alignment :: CKey -> Int #

peekElemOff :: Ptr CKey -> Int -> IO CKey #

pokeElemOff :: Ptr CKey -> Int -> CKey -> IO () #

peekByteOff :: Ptr b -> Int -> IO CKey #

pokeByteOff :: Ptr b -> Int -> CKey -> IO () #

peek :: Ptr CKey -> IO CKey #

poke :: Ptr CKey -> CKey -> IO () #

Storable CTimer 
Instance details

Defined in System.Posix.Types

Storable CSocklen 
Instance details

Defined in System.Posix.Types

Storable CNfds 
Instance details

Defined in System.Posix.Types

Methods

sizeOf :: CNfds -> Int #

alignment :: CNfds -> Int #

peekElemOff :: Ptr CNfds -> Int -> IO CNfds #

pokeElemOff :: Ptr CNfds -> Int -> CNfds -> IO () #

peekByteOff :: Ptr b -> Int -> IO CNfds #

pokeByteOff :: Ptr b -> Int -> CNfds -> IO () #

peek :: Ptr CNfds -> IO CNfds #

poke :: Ptr CNfds -> CNfds -> IO () #

Storable Fd 
Instance details

Defined in System.Posix.Types

Methods

sizeOf :: Fd -> Int #

alignment :: Fd -> Int #

peekElemOff :: Ptr Fd -> Int -> IO Fd #

pokeElemOff :: Ptr Fd -> Int -> Fd -> IO () #

peekByteOff :: Ptr b -> Int -> IO Fd #

pokeByteOff :: Ptr b -> Int -> Fd -> IO () #

peek :: Ptr Fd -> IO Fd #

poke :: Ptr Fd -> Fd -> IO () #

Storable CChar 
Instance details

Defined in Foreign.C.Types

Methods

sizeOf :: CChar -> Int #

alignment :: CChar -> Int #

peekElemOff :: Ptr CChar -> Int -> IO CChar #

pokeElemOff :: Ptr CChar -> Int -> CChar -> IO () #

peekByteOff :: Ptr b -> Int -> IO CChar #

pokeByteOff :: Ptr b -> Int -> CChar -> IO () #

peek :: Ptr CChar -> IO CChar #

poke :: Ptr CChar -> CChar -> IO () #

Storable CSChar 
Instance details

Defined in Foreign.C.Types

Storable CUChar 
Instance details

Defined in Foreign.C.Types

Storable CShort 
Instance details

Defined in Foreign.C.Types

Storable CUShort 
Instance details

Defined in Foreign.C.Types

Storable CInt 
Instance details

Defined in Foreign.C.Types

Methods

sizeOf :: CInt -> Int #

alignment :: CInt -> Int #

peekElemOff :: Ptr CInt -> Int -> IO CInt #

pokeElemOff :: Ptr CInt -> Int -> CInt -> IO () #

peekByteOff :: Ptr b -> Int -> IO CInt #

pokeByteOff :: Ptr b -> Int -> CInt -> IO () #

peek :: Ptr CInt -> IO CInt #

poke :: Ptr CInt -> CInt -> IO () #

Storable CUInt 
Instance details

Defined in Foreign.C.Types

Methods

sizeOf :: CUInt -> Int #

alignment :: CUInt -> Int #

peekElemOff :: Ptr CUInt -> Int -> IO CUInt #

pokeElemOff :: Ptr CUInt -> Int -> CUInt -> IO () #

peekByteOff :: Ptr b -> Int -> IO CUInt #

pokeByteOff :: Ptr b -> Int -> CUInt -> IO () #

peek :: Ptr CUInt -> IO CUInt #

poke :: Ptr CUInt -> CUInt -> IO () #

Storable CLong 
Instance details

Defined in Foreign.C.Types

Methods

sizeOf :: CLong -> Int #

alignment :: CLong -> Int #

peekElemOff :: Ptr CLong -> Int -> IO CLong #

pokeElemOff :: Ptr CLong -> Int -> CLong -> IO () #

peekByteOff :: Ptr b -> Int -> IO CLong #

pokeByteOff :: Ptr b -> Int -> CLong -> IO () #

peek :: Ptr CLong -> IO CLong #

poke :: Ptr CLong -> CLong -> IO () #

Storable CULong 
Instance details

Defined in Foreign.C.Types

Storable CLLong 
Instance details

Defined in Foreign.C.Types

Storable CULLong 
Instance details

Defined in Foreign.C.Types

Storable CBool 
Instance details

Defined in Foreign.C.Types

Methods

sizeOf :: CBool -> Int #

alignment :: CBool -> Int #

peekElemOff :: Ptr CBool -> Int -> IO CBool #

pokeElemOff :: Ptr CBool -> Int -> CBool -> IO () #

peekByteOff :: Ptr b -> Int -> IO CBool #

pokeByteOff :: Ptr b -> Int -> CBool -> IO () #

peek :: Ptr CBool -> IO CBool #

poke :: Ptr CBool -> CBool -> IO () #

Storable CFloat 
Instance details

Defined in Foreign.C.Types

Storable CDouble 
Instance details

Defined in Foreign.C.Types

Storable CPtrdiff 
Instance details

Defined in Foreign.C.Types

Storable CSize 
Instance details

Defined in Foreign.C.Types

Methods

sizeOf :: CSize -> Int #

alignment :: CSize -> Int #

peekElemOff :: Ptr CSize -> Int -> IO CSize #

pokeElemOff :: Ptr CSize -> Int -> CSize -> IO () #

peekByteOff :: Ptr b -> Int -> IO CSize #

pokeByteOff :: Ptr b -> Int -> CSize -> IO () #

peek :: Ptr CSize -> IO CSize #

poke :: Ptr CSize -> CSize -> IO () #

Storable CWchar 
Instance details

Defined in Foreign.C.Types

Storable CSigAtomic 
Instance details

Defined in Foreign.C.Types

Storable CClock 
Instance details

Defined in Foreign.C.Types

Storable CTime 
Instance details

Defined in Foreign.C.Types

Methods

sizeOf :: CTime -> Int #

alignment :: CTime -> Int #

peekElemOff :: Ptr CTime -> Int -> IO CTime #

pokeElemOff :: Ptr CTime -> Int -> CTime -> IO () #

peekByteOff :: Ptr b -> Int -> IO CTime #

pokeByteOff :: Ptr b -> Int -> CTime -> IO () #

peek :: Ptr CTime -> IO CTime #

poke :: Ptr CTime -> CTime -> IO () #

Storable CUSeconds 
Instance details

Defined in Foreign.C.Types

Storable CSUSeconds 
Instance details

Defined in Foreign.C.Types

Storable CIntPtr 
Instance details

Defined in Foreign.C.Types

Storable CUIntPtr 
Instance details

Defined in Foreign.C.Types

Storable CIntMax 
Instance details

Defined in Foreign.C.Types

Storable CUIntMax 
Instance details

Defined in Foreign.C.Types

Storable WordPtr 
Instance details

Defined in Foreign.Ptr

Storable IntPtr 
Instance details

Defined in Foreign.Ptr

Storable Fingerprint

Since: base-4.4.0.0

Instance details

Defined in Foreign.Storable

(Storable a, Integral a) => Storable (Ratio a)

Since: base-4.8.0.0

Instance details

Defined in Foreign.Storable

Methods

sizeOf :: Ratio a -> Int #

alignment :: Ratio a -> Int #

peekElemOff :: Ptr (Ratio a) -> Int -> IO (Ratio a) #

pokeElemOff :: Ptr (Ratio a) -> Int -> Ratio a -> IO () #

peekByteOff :: Ptr b -> Int -> IO (Ratio a) #

pokeByteOff :: Ptr b -> Int -> Ratio a -> IO () #

peek :: Ptr (Ratio a) -> IO (Ratio a) #

poke :: Ptr (Ratio a) -> Ratio a -> IO () #

Storable (StablePtr a)

Since: base-2.1

Instance details

Defined in Foreign.Storable

Methods

sizeOf :: StablePtr a -> Int #

alignment :: StablePtr a -> Int #

peekElemOff :: Ptr (StablePtr a) -> Int -> IO (StablePtr a) #

pokeElemOff :: Ptr (StablePtr a) -> Int -> StablePtr a -> IO () #

peekByteOff :: Ptr b -> Int -> IO (StablePtr a) #

pokeByteOff :: Ptr b -> Int -> StablePtr a -> IO () #

peek :: Ptr (StablePtr a) -> IO (StablePtr a) #

poke :: Ptr (StablePtr a) -> StablePtr a -> IO () #

Storable (Ptr a)

Since: base-2.1

Instance details

Defined in Foreign.Storable

Methods

sizeOf :: Ptr a -> Int #

alignment :: Ptr a -> Int #

peekElemOff :: Ptr (Ptr a) -> Int -> IO (Ptr a) #

pokeElemOff :: Ptr (Ptr a) -> Int -> Ptr a -> IO () #

peekByteOff :: Ptr b -> Int -> IO (Ptr a) #

pokeByteOff :: Ptr b -> Int -> Ptr a -> IO () #

peek :: Ptr (Ptr a) -> IO (Ptr a) #

poke :: Ptr (Ptr a) -> Ptr a -> IO () #

Storable (FunPtr a)

Since: base-2.1

Instance details

Defined in Foreign.Storable

Methods

sizeOf :: FunPtr a -> Int #

alignment :: FunPtr a -> Int #

peekElemOff :: Ptr (FunPtr a) -> Int -> IO (FunPtr a) #

pokeElemOff :: Ptr (FunPtr a) -> Int -> FunPtr a -> IO () #

peekByteOff :: Ptr b -> Int -> IO (FunPtr a) #

pokeByteOff :: Ptr b -> Int -> FunPtr a -> IO () #

peek :: Ptr (FunPtr a) -> IO (FunPtr a) #

poke :: Ptr (FunPtr a) -> FunPtr a -> IO () #

Storable a => Storable (Complex a)

Since: base-4.8.0.0

Instance details

Defined in Data.Complex

Methods

sizeOf :: Complex a -> Int #

alignment :: Complex a -> Int #

peekElemOff :: Ptr (Complex a) -> Int -> IO (Complex a) #

pokeElemOff :: Ptr (Complex a) -> Int -> Complex a -> IO () #

peekByteOff :: Ptr b -> Int -> IO (Complex a) #

pokeByteOff :: Ptr b -> Int -> Complex a -> IO () #

peek :: Ptr (Complex a) -> IO (Complex a) #

poke :: Ptr (Complex a) -> Complex a -> IO () #

Storable a => Storable (Identity a)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Identity

Methods

sizeOf :: Identity a -> Int #

alignment :: Identity a -> Int #

peekElemOff :: Ptr (Identity a) -> Int -> IO (Identity a) #

pokeElemOff :: Ptr (Identity a) -> Int -> Identity a -> IO () #

peekByteOff :: Ptr b -> Int -> IO (Identity a) #

pokeByteOff :: Ptr b -> Int -> Identity a -> IO () #

peek :: Ptr (Identity a) -> IO (Identity a) #

poke :: Ptr (Identity a) -> Identity a -> IO () #

Storable a => Storable (Down a)

Since: base-4.14.0.0

Instance details

Defined in Data.Ord

Methods

sizeOf :: Down a -> Int #

alignment :: Down a -> Int #

peekElemOff :: Ptr (Down a) -> Int -> IO (Down a) #

pokeElemOff :: Ptr (Down a) -> Int -> Down a -> IO () #

peekByteOff :: Ptr b -> Int -> IO (Down a) #

pokeByteOff :: Ptr b -> Int -> Down a -> IO () #

peek :: Ptr (Down a) -> IO (Down a) #

poke :: Ptr (Down a) -> Down a -> IO () #

Prim a => Storable (PrimStorable a) 
Instance details

Defined in Data.Primitive.Types

Storable a => Storable (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

Methods

sizeOf :: Const a b -> Int #

alignment :: Const a b -> Int #

peekElemOff :: Ptr (Const a b) -> Int -> IO (Const a b) #

pokeElemOff :: Ptr (Const a b) -> Int -> Const a b -> IO () #

peekByteOff :: Ptr b0 -> Int -> IO (Const a b) #

pokeByteOff :: Ptr b0 -> Int -> Const a b -> IO () #

peek :: Ptr (Const a b) -> IO (Const a b) #

poke :: Ptr (Const a b) -> Const a b -> IO () #

Accessors

Length information

length :: Storable a => MVector s a -> Int Source #

Length of the mutable vector.

null :: Storable a => MVector s a -> Bool Source #

Check whether the vector is empty

Extracting subvectors

slice Source #

Arguments

:: Storable a 
=> Int

i starting index

-> Int

n length

-> MVector s a 
-> MVector s a 

Yield a part of the mutable vector without copying it. The vector must contain at least i+n elements.

init :: Storable a => MVector s a -> MVector s a Source #

Drop last element of the mutable vector without making a copy. If vector is empty exception is thrown.

tail :: Storable a => MVector s a -> MVector s a Source #

Drop first element of the mutable vector without making a copy. If vector is empty exception is thrown.

take :: Storable a => Int -> MVector s a -> MVector s a Source #

Take n first elements of the mutable vector without making a copy. For negative n empty vector is returned. If n is larger than vector's length empty vector is returned,

drop :: Storable a => Int -> MVector s a -> MVector s a Source #

Drop n first element of the mutable vector without making a copy. For negative n vector is returned unchanged and if n is larger than vector's length empty vector is returned.

splitAt :: Storable a => Int -> MVector s a -> (MVector s a, MVector s a) Source #

unsafeSlice Source #

Arguments

:: Storable a 
=> Int

starting index

-> Int

length of the slice

-> MVector s a 
-> MVector s a 

Yield a part of the mutable vector without copying it. No bounds checks are performed.

unsafeInit :: Storable a => MVector s a -> MVector s a Source #

Same as init but doesn't do range checks.

unsafeTail :: Storable a => MVector s a -> MVector s a Source #

Same as tail but doesn't do range checks.

unsafeTake :: Storable a => Int -> MVector s a -> MVector s a Source #

Unsafe variant of take. If called with out of range n it will simply create invalid slice that likely violate memory safety

unsafeDrop :: Storable a => Int -> MVector s a -> MVector s a Source #

Unsafe variant of drop. If called with out of range n it will simply create invalid slice that likely violate memory safety

Overlapping

overlaps :: Storable a => MVector s a -> MVector s a -> Bool Source #

Check whether two vectors overlap.

Construction

Initialisation

new :: (PrimMonad m, Storable a) => Int -> m (MVector (PrimState m) a) Source #

Create a mutable vector of the given length.

unsafeNew :: (PrimMonad m, Storable a) => Int -> m (MVector (PrimState m) a) Source #

Create a mutable vector of the given length. The vector content is uninitialized, which means it is filled with whatever underlying memory buffer happens to contain.

Since: 0.5

replicate :: (PrimMonad m, Storable a) => Int -> a -> m (MVector (PrimState m) a) Source #

Create a mutable vector of the given length (0 if the length is negative) and fill it with an initial value.

replicateM :: (PrimMonad m, Storable a) => Int -> m a -> m (MVector (PrimState m) a) Source #

Create a mutable vector of the given length (0 if the length is negative) and fill it with values produced by repeatedly executing the monadic action.

generate :: (PrimMonad m, Storable a) => Int -> (Int -> a) -> m (MVector (PrimState m) a) Source #

O(n) Create a mutable vector of the given length (0 if the length is negative) and fill it with the results of applying the function to each index.

Since: 0.12.3.0

generateM :: (PrimMonad m, Storable a) => Int -> (Int -> m a) -> m (MVector (PrimState m) a) Source #

O(n) Create a mutable vector of the given length (0 if the length is negative) and fill it with the results of applying the monadic function to each index. Iteration starts at index 0.

Since: 0.12.3.0

clone :: (PrimMonad m, Storable a) => MVector (PrimState m) a -> m (MVector (PrimState m) a) Source #

Create a copy of a mutable vector.

Growing

grow :: (PrimMonad m, Storable a) => MVector (PrimState m) a -> Int -> m (MVector (PrimState m) a) Source #

Grow a storable vector by the given number of elements. The number must be non-negative. Same semantics as in grow for generic vector.

Examples

Expand
>>> import qualified Data.Vector.Storable as VS
>>> import qualified Data.Vector.Storable.Mutable as MVS
>>> mv <- VS.thaw $ VS.fromList ([10, 20, 30] :: [Int])
>>> mv' <- MVS.grow mv 2

Extra memory at the end of the newly allocated vector is initialized to 0 bytes, which for Storable instance will usually correspond to some default value for a particular type, eg. 0 for Int, False for Bool, etc. However, if unsafeGrow was used instead this would not have been guaranteed and some garbage would be there instead:

>>> VS.freeze mv'
[10,20,30,0,0]

Having the extra space we can write new values in there:

>>> MVS.write mv' 3 999
>>> VS.freeze mv'
[10,20,30,999,0]

It is important to note that the source mutable vector is not affected when the newly allocated one is mutated.

>>> MVS.write mv' 2 888
>>> VS.freeze mv'
[10,20,888,999,0]
>>> VS.freeze mv
[10,20,30]

Since: 0.5

unsafeGrow :: (PrimMonad m, Storable a) => MVector (PrimState m) a -> Int -> m (MVector (PrimState m) a) Source #

Grow a vector by the given number of elements. The number must be non-negative but this is not checked. Same semantics as in unsafeGrow for generic vector.

Since: 0.5

Restricting memory usage

clear :: (PrimMonad m, Storable a) => MVector (PrimState m) a -> m () Source #

Reset all elements of the vector to some undefined value, clearing all references to external objects. This is usually a noop for unboxed vectors.

Accessing individual elements

read :: (PrimMonad m, Storable a) => MVector (PrimState m) a -> Int -> m a Source #

Yield the element at the given position.

write :: (PrimMonad m, Storable a) => MVector (PrimState m) a -> Int -> a -> m () Source #

Replace the element at the given position.

modify :: (PrimMonad m, Storable a) => MVector (PrimState m) a -> (a -> a) -> Int -> m () Source #

Modify the element at the given position.

modifyM :: (PrimMonad m, Storable a) => MVector (PrimState m) a -> (a -> m a) -> Int -> m () Source #

Modify the element at the given position using a monadic function.

Since: 0.12.3.0

swap :: (PrimMonad m, Storable a) => MVector (PrimState m) a -> Int -> Int -> m () Source #

Swap the elements at the given positions.

exchange :: (PrimMonad m, Storable a) => MVector (PrimState m) a -> Int -> a -> m a Source #

Replace the element at the given position and return the old element.

unsafeRead :: (PrimMonad m, Storable a) => MVector (PrimState m) a -> Int -> m a Source #

Yield the element at the given position. No bounds checks are performed.

unsafeWrite :: (PrimMonad m, Storable a) => MVector (PrimState m) a -> Int -> a -> m () Source #

Replace the element at the given position. No bounds checks are performed.

unsafeModify :: (PrimMonad m, Storable a) => MVector (PrimState m) a -> (a -> a) -> Int -> m () Source #

Modify the element at the given position. No bounds checks are performed.

unsafeModifyM :: (PrimMonad m, Storable a) => MVector (PrimState m) a -> (a -> m a) -> Int -> m () Source #

Modify the element at the given position using a monadic function. No bounds checks are performed.

Since: 0.12.3.0

unsafeSwap :: (PrimMonad m, Storable a) => MVector (PrimState m) a -> Int -> Int -> m () Source #

Swap the elements at the given positions. No bounds checks are performed.

unsafeExchange :: (PrimMonad m, Storable a) => MVector (PrimState m) a -> Int -> a -> m a Source #

Replace the element at the given position and return the old element. No bounds checks are performed.

Folds

mapM_ :: (PrimMonad m, Storable a) => (a -> m b) -> MVector (PrimState m) a -> m () Source #

O(n) Apply the monadic action to every element of the vector, discarding the results.

Since: 0.12.3.0

imapM_ :: (PrimMonad m, Storable a) => (Int -> a -> m b) -> MVector (PrimState m) a -> m () Source #

O(n) Apply the monadic action to every element of the vector and its index, discarding the results.

Since: 0.12.3.0

forM_ :: (PrimMonad m, Storable a) => MVector (PrimState m) a -> (a -> m b) -> m () Source #

O(n) Apply the monadic action to every element of the vector, discarding the results. It's same as the flip mapM_.

Since: 0.12.3.0

iforM_ :: (PrimMonad m, Storable a) => MVector (PrimState m) a -> (Int -> a -> m b) -> m () Source #

O(n) Apply the monadic action to every element of the vector and its index, discarding the results. It's same as the flip imapM_.

Since: 0.12.3.0

foldl :: (PrimMonad m, Storable a) => (b -> a -> b) -> b -> MVector (PrimState m) a -> m b Source #

O(n) Pure left fold.

Since: 0.12.3.0

foldl' :: (PrimMonad m, Storable a) => (b -> a -> b) -> b -> MVector (PrimState m) a -> m b Source #

O(n) Pure left fold with strict accumulator.

Since: 0.12.3.0

foldM :: (PrimMonad m, Storable a) => (b -> a -> m b) -> b -> MVector (PrimState m) a -> m b Source #

O(n) Monadic fold.

Since: 0.12.3.0

foldM' :: (PrimMonad m, Storable a) => (b -> a -> m b) -> b -> MVector (PrimState m) a -> m b Source #

O(n) Monadic fold with strict accumulator.

Since: 0.12.3.0

foldr :: (PrimMonad m, Storable a) => (a -> b -> b) -> b -> MVector (PrimState m) a -> m b Source #

O(n) Pure right fold.

Since: 0.12.3.0

foldr' :: (PrimMonad m, Storable a) => (a -> b -> b) -> b -> MVector (PrimState m) a -> m b Source #

O(n) Pure right fold with strict accumulator.

Since: 0.12.3.0

foldrM :: (PrimMonad m, Storable a) => (a -> b -> m b) -> b -> MVector (PrimState m) a -> m b Source #

O(n) Monadic right fold.

Since: 0.12.3.0

foldrM' :: (PrimMonad m, Storable a) => (a -> b -> m b) -> b -> MVector (PrimState m) a -> m b Source #

O(n) Monadic right fold with strict accumulator.

Since: 0.12.3.0

ifoldl :: (PrimMonad m, Storable a) => (b -> Int -> a -> b) -> b -> MVector (PrimState m) a -> m b Source #

O(n) Pure left fold (function applied to each element and its index).

Since: 0.12.3.0

ifoldl' :: (PrimMonad m, Storable a) => (b -> Int -> a -> b) -> b -> MVector (PrimState m) a -> m b Source #

O(n) Pure left fold with strict accumulator (function applied to each element and its index).

Since: 0.12.3.0

ifoldM :: (PrimMonad m, Storable a) => (b -> Int -> a -> m b) -> b -> MVector (PrimState m) a -> m b Source #

O(n) Monadic fold (action applied to each element and its index).

Since: 0.12.3.0

ifoldM' :: (PrimMonad m, Storable a) => (b -> Int -> a -> m b) -> b -> MVector (PrimState m) a -> m b Source #

O(n) Monadic fold with strict accumulator (action applied to each element and its index).

Since: 0.12.3.0

ifoldr :: (PrimMonad m, Storable a) => (Int -> a -> b -> b) -> b -> MVector (PrimState m) a -> m b Source #

O(n) Pure right fold (function applied to each element and its index).

Since: 0.12.3.0

ifoldr' :: (PrimMonad m, Storable a) => (Int -> a -> b -> b) -> b -> MVector (PrimState m) a -> m b Source #

O(n) Pure right fold with strict accumulator (function applied to each element and its index).

Since: 0.12.3.0

ifoldrM :: (PrimMonad m, Storable a) => (Int -> a -> b -> m b) -> b -> MVector (PrimState m) a -> m b Source #

O(n) Monadic right fold (action applied to each element and its index).

Since: 0.12.3.0

ifoldrM' :: (PrimMonad m, Storable a) => (Int -> a -> b -> m b) -> b -> MVector (PrimState m) a -> m b Source #

O(n) Monadic right fold with strict accumulator (action applied to each element and its index).

Since: 0.12.3.0

Modifying vectors

nextPermutation :: (PrimMonad m, Storable e, Ord e) => MVector (PrimState m) e -> m Bool Source #

Compute the next (lexicographically) permutation of given vector in-place. Returns False when input is the last permutation

Filling and copying

set :: (PrimMonad m, Storable a) => MVector (PrimState m) a -> a -> m () Source #

Set all elements of the vector to the given value.

copy Source #

Arguments

:: (PrimMonad m, Storable a) 
=> MVector (PrimState m) a

target

-> MVector (PrimState m) a

source

-> m () 

Copy a vector. The two vectors must have the same length and may not overlap.

move Source #

Arguments

:: (PrimMonad m, Storable a) 
=> MVector (PrimState m) a

target

-> MVector (PrimState m) a

source

-> m () 

Move the contents of a vector. The two vectors must have the same length.

If the vectors do not overlap, then this is equivalent to copy. Otherwise, the copying is performed as if the source vector were copied to a temporary vector and then the temporary vector was copied to the target vector.

unsafeCopy Source #

Arguments

:: (PrimMonad m, Storable a) 
=> MVector (PrimState m) a

target

-> MVector (PrimState m) a

source

-> m () 

Copy a vector. The two vectors must have the same length and may not overlap. This is not checked.

unsafeMove Source #

Arguments

:: (PrimMonad m, Storable a) 
=> MVector (PrimState m) a

target

-> MVector (PrimState m) a

source

-> m () 

Move the contents of a vector. The two vectors must have the same length, but this is not checked.

If the vectors do not overlap, then this is equivalent to unsafeCopy. Otherwise, the copying is performed as if the source vector were copied to a temporary vector and then the temporary vector was copied to the target vector.

Unsafe conversions

unsafeCast :: forall a b s. (Storable a, Storable b) => MVector s a -> MVector s b Source #

O(1) Unsafely cast a mutable vector from one element type to another. The operation just changes the type of the underlying pointer and does not modify the elements.

The resulting vector contains as many elements as can fit into the underlying memory block.

Raw pointers

unsafeFromForeignPtr Source #

Arguments

:: Storable a 
=> ForeignPtr a

pointer

-> Int

offset

-> Int

length

-> MVector s a 

Create a mutable vector from a ForeignPtr with an offset and a length.

Modifying data through the ForeignPtr afterwards is unsafe if the vector could have been frozen before the modification.

If your offset is 0 it is more efficient to use unsafeFromForeignPtr0.

unsafeFromForeignPtr0 Source #

Arguments

:: Storable a 
=> ForeignPtr a

pointer

-> Int

length

-> MVector s a 

O(1) Create a mutable vector from a ForeignPtr and a length.

It is assumed the pointer points directly to the data (no offset). Use unsafeFromForeignPtr if you need to specify an offset.

Modifying data through the ForeignPtr afterwards is unsafe if the vector could have been frozen before the modification.

unsafeToForeignPtr :: Storable a => MVector s a -> (ForeignPtr a, Int, Int) Source #

Yield the underlying ForeignPtr together with the offset to the data and its length. Modifying the data through the ForeignPtr is unsafe if the vector could have frozen before the modification.

unsafeToForeignPtr0 :: Storable a => MVector s a -> (ForeignPtr a, Int) Source #

O(1) Yield the underlying ForeignPtr together with its length.

You can assume the pointer points directly to the data (no offset).

Modifying the data through the ForeignPtr is unsafe if the vector could have frozen before the modification.

unsafeWith :: Storable a => IOVector a -> (Ptr a -> IO b) -> IO b Source #

Pass a pointer to the vector's data to the IO action. Modifying data through the pointer is unsafe if the vector could have been frozen before the modification.